多轴联动电火花加工数控系统开发/与应用


Time:2023-10-08 13:44:15

关于多轴联动电火花加工数控系统开发的问题,我们总结了以下几点,给你解答:

多轴联动电火花加工数控系统开发


多轴联动电火花加工数控系统开发

Sg数控专业的毕业论文 进行bsp;的提高加工效率。!"$叶片五轴联动加工刀位轨迹的生成 针对大型混流式叶片各曲面的特点,进行合理的刀位轨迹规划和计算,是使所生成的刀位轨迹无干涉、无碰撞、稳定性好、编程效率高的关键。由于五轴加工的刀具位置和刀具轴线方向是变化的,因此五轴加工的是由工件坐标系中的刀位点位置矢量和刀具轴线方向矢量 组成,刀轴可通过前倾角和倾斜角来控制,于是我们可 根据曲面在切削点处的局部坐标计算出刀位矢量和刀轴 矢量。从加工效率、表面质量和切削工 艺性能来看,选择 沿叶片造型的参数线作为铣削加工的方向分多次粗铣和一次精铣,然后划分加工区域,定义与机床有关的参数,根据以上所选叶片的加工部位、装夹 图,混流式叶片的刀轨生成定 位 方 式 、 机 床 、 刀具及切削参数和余量分布情况将叶片分为多个组合面分别进行加工。通过对曲面曲率的分布情况的分析对于 不同的区域采用不同的面铣刀。粗加工给出每次加工的 余量,精加工采用同一直径的铣刀,根据粗糙度要求给 定残余高度,根据具体情况选择切削类型、切削参数、 刀轴方向、进退刀方式等参数,生成的刀位轨迹如图, 所示。但是对于像叶片这样的曲率变化很大而又不均匀 的雕塑曲面零件我们还要根据情况作大量的刀位编辑, 并且必须进一步通过切削仿真做干涉和碰撞检查修改和编辑刀轨。!"#叶片五轴联动数控加工仿真数控加工仿真通过软件模拟加工环境、刀具路与材料切除过程来检验并优化加工程序。在计算机上仿真验证多轴联动加工的刀具轨迹,辅助进行加工刀具干涉检查和机床与叶片的碰撞检查,取代试切削或试加工过程,可大大地降低制造成本,并缩短研制周期,避免加工设备与叶片和夹具等的碰撞,保证加工过程的安全。加工零件的"!代码在投入实际的加工之前通常需要进行试切,水轮机叶片是非常复杂的雕塑曲面体,开发利用数控加工仿真技术是其成功采用五轴联动数控加工的关键。在此,我们首先进电子商务资料库&*$.2(84/*;21::行工艺系统分析,明确机床!"!系统型号、机床结构形式和尺寸、机床运动原理和机床坐标系统。用三维!,-软件建立机床运动部件和固定部件的实体几何模型,并转换成仿真软件可用的格式,然后建立刀具库,在仿真软件中新建用户文件,设置所用!"!系统,并建立机床运动模型,即部件树,添加各部件的几何模型,并准确定位,最后设置机床参数。 接下来将叶片模型变换到加工位置计算出刀具轨迹,再以此轨迹进行叶片切削过程、刀位轨迹和机床运动的三维动态仿真。这样就可以清楚的监控到叶片加工过程中的过切与欠切、刀杆和联接系统与叶片、机床各运动部件与叶片和夹具间的干涉碰撞,从而保证了数控编程的质量,减少了试切的工作量和劳动强度,提高了编程的一次成功率,缩短了产品设计和加工周期,大大提高生产效率。如在数控加工行业进行推广,可产生巨大的经济和社会效益。 混流式叶片的机床加工仿真 叶片刀位轨迹的后置处理后置处理是数控编程的一个重要内容,它将我们前面生成的刀位数据转换成适合具体机床的数据。后处理最基本的两个要素就是刀轨数据和后处理器。我们应首先了解龙门移动式五坐标数控铣镗床的结构、机床配备的附属设备、机床具备的功能及功能实现的方式和机床配备的数控系统,熟悉该系统的"!编程包括功能代码的组成、含义。然后应用通用后置处理器导向模板,根据以上掌握的知识,开发定制专用后置处理器。然后将我们已得刀位源文件进行输入转换成可控制机床加工的代码。 结束语 复杂曲面的多轴联动数控编程是一涉及到众多领域 知识的复杂流程,是数字化仿真及优化的过程。本文介 绍的大型水轮机叶片的多轴联动编程技术,已用于工程 实际大型叶片的数控编程中,实现了大型转轮叶片的五 轴联动数控加工的刀位轨迹计算和加工仿真,保证了后 续数控加工的质量和效率,已作为大型水轮机叶片五轴 联动数控加工的编程工具用于实际生产中。
数控车床刀架的故障维修 数控技术及数控机床的应用,成功地解决了某些形状复杂,一致性要求高的中、小批零件的自动化问题,这不仅大大提高了生产效率和加工精度,还减轻了工人的劳动强度,缩短了生产准备周期。但是,在数控车床使用过程中,数控车床难免会出现各种故障,所以故障的维修就成了数控车床使用者最关键的问题。一方面销售公司售后服务不能得到及时保证,另一方面掌握一些维修技术可以快速判断故障所在,缩短维修时间,让设备尽快运转起来。在日常故障中,我们经常遇见的是刀架类、主轴类、螺纹加工类、系统显示类、驱动类、通信类等故障。而刀架故障在其中占有很大比例。在这里,分类介绍一下日常工作中遇见的四工位电动刀架各类故障及相应地解决方法,希望能给大家提供一些有益的借鉴。所用数控系统是广州数控设备有限公司所生产的GSK系列车床数控系统。 故障现象一:电动刀架锁不紧 故障原因 处理方法 ①发信盘位置没对正 :拆开刀架的顶盖,旋动并调整发信盘位置,使刀架的霍尔元件对准磁钢,使刀位停在准确位置。 ②系统反锁时间不够长:调整系统反锁时间参数即可(新刀架反锁时间t=1.2s即可)。 ③机械锁紧机构故障 :拆开刀架,调整机械,并检查定位销是否折断. 故障现象二:电动刀架某一位刀号转不停,其余刀位可以转动 故障原因 处理方法 ①此位刀的霍尔元件损坏:确认是哪个刀位使刀架转不停,在系统上输入指令转动该刀位,用万用表量该刀位信号触点对+24V触点是否有电压变化,若无变化,可判定为该位刀霍尔元件损坏,更换发信盘或霍尔元件。 ②此刀位信号线断路,造成系统无法检测到位信号:检查该刀位信号与系统的连线是否存在断路,正确连接即可。 ③系统的刀位信号接收电路有问题:当确定该刀位霍尔元件没问题,以及该刀位信号与系统的连线也没问题的情况下更换主板。
3 结语 采用 Ma sterCAM软件能方便的建立零件的几何模型,迅速自动生成数控代码,缩短编程人员的编程时间,特别对复杂零件的数控程序编制,可大大提高程序的正确性和安全性,降低生产成本,提高工作效率。 参 考 文 献: [1] 王 贵 明,数控实用技术[M]机械工业出版社,2007.7. [2]Y us uf A ltintas,数控技术与制造自动化[M].北京:化学工业出版社,2002.11. [3]周 建 强 ,冯晋.MasterCAM在零件设计和加工中的应用[Jl.扬州职业大学学报,2001,(3). [4]邓 小 玲 ,MasterCAM在数控加T-中的应用[i]煤矿机械,2004,( 1 1). [5]王 志 平 ,数控编程与操作[M].北京:高等教育出版社,2003.7.

多轴联动电火花加工数控系统开发与应用


多轴联动电火花加工数控系统开发与应用

基于PMAC的数控火焰切割机数控系统开发 摘 要:通过分析数控火焰切割机加工工艺的特点,开发了基于工业PC机和PMAC卡的数控火焰切割机数控系统,并对它的硬件和软件设计作了详细的论述,该数控系统已成功地应用于旧数控火焰切割机的改造中。 关键词:工业控制计算机;可编程多轴运动控制器;数控火焰切割机 近年来,随着工业PC机性能的快速发展,可靠性大为提高,而价格却大幅度降低,以工业PC机为核心的控制系统已广泛被工业控制领域所接受。在机床控制领域,采用工业PC机,在流行的操作系统下发展通用的数控系统,已成为数控技术发展的最新潮流。其中,基于工业PC机和Windows操作系统的开放式、模块化数控系统是发展的主要方向。 1数控系统的硬件结构 1.1PMAC多轴运动控制器 美国Delta Tau公司生产的可编程多轴运动控制器(PMAC)是世界上功能最强的运动控制器之一,它借助于Motorola的DSP56001/56002数字信号处理器,可以同时操纵1~8个轴。它能够对存储在它内部的程序进行单独的运算,执行运动程序、PLC程序、进行伺服环更新,并以串口、总线两种方式与主计算机进行通讯。而且它还可以自动对任务进行优先等级判别,从而进行实时的多任务处理,这使得它在处理时间和任务切换这两方面大大减轻主机和编程器的负担,提高了整个控制系统的运行速度和控制精度。 1.2数控火焰切割机加工工艺特点 数控火焰切割机,具有一般数控机床的特点,能根据数控加工程序,自动完成从点火—预热—通切割氧—切割—熄火—返回原点的整套切割过程。但数控火焰切割机又有别于一般数控金属切削机床,它利用氧—乙炔火焰把钢板割缝加热到熔融状态,用高压氧吹透钢板进行切割,而不像金属切削机床那样,是用金属切削工具与工件刚性接触来进行切削加工。由于各种因素的影响,有时会发生钢板未割穿的现象,此时割炬应暂停下来按原轨迹准确地返回到未割穿点,再按原轨迹重新切割,因此数控火焰切割机必须具有随时实现暂停及按原轨迹返回的功能。 1.3数控系统硬件结构 该数控火焰切割机采用工业PC机为基础,在工控机主板上的ISA扩展槽插上PMAC多轴运动控制器,形成该机床的控制中心。工控机上的CPU与PMAC卡的CPU构成主从式双微处理器结构,两个CPU各自实现相应的功能,其中PMAC主要完成机床三轴的运动控制、控制面板开关量的控制和数字化采集的控制,工控机则主要实现系统的管理功能。为了实现PMAC多轴运动控制的功能,还需在PMAC板上扩展相应的I/O板、伺服驱动单元、伺服电机、编码器等,最终形成一个完整的控制系统。控制系统硬件由主频为233MHz的工业PC机、PMAC\|Lite1.5运动控制器、I/O板、伺服单元及交流伺服电机等组成。数控系统硬件框图,如图1所示。 (1)PMAC运动控制器与主机之间的通讯采用了两种方式:一种是总线通讯方式;另一种是利用双端口RAM(DPRAM)进行数据通信,主机与PMAC运动控制器主要通过PC总线通讯,至于控制卡和电机的状态、电机位置、速度、跟随误差等数据则通过DPRAM交换信息。总线通讯方式是指主机到指定的地址上去寻找PMAC运动控制器,其中指定的地址是由PMAC的跳线确定。双端口RAM主要是用来与PMAC进行快速的数据通讯和命令通讯。一方面,双端口RAM在用于向PMAC写数据时,在实时状态下能够快速地将位置数据信息或程序信息进行重复下载:另一方面,双端口RAM在用于从PMAC中读取数据时,可以快速地重复地获取系统的状态信息。譬如,交流伺服电机的状态、位置、速度、跟随误差等数据可以不停被更新,并且能够被PLC或被PMAC自动地写入DPRAM。如果系统中不使用DPRAM,这些数据必须用PMAC的在线命令(如?、P、V等),通过PC总线进行数据的存取。由于通过DPRAM进行的数据存取不需要经过通讯口发送命令和等待响应,所以所需的时间要少得多,因此响应的速度就快得多。除了快速自动的存取功能外,还可以用PMAC的M变量和主机的指针变量来指定DPRAM中还没有被使用的寄存器,实现数据在主机与PMAC之间的传送。而PMAC在使用数据采集功能时,所采集的数据直接送到DPRAM中,而不是常规的RAM中。 (2)PMAC板的内置PLC功能是经智能I/O接口的输入输出实现的。在控制系统中,送入PLC的输入信号主要有:操作面板和机床上的控制按钮、选择开关等信号;各轴的行程开关、机械零点开关等信号;机床电器动作、限位、报警等信号;强电柜中接触器、气动开关接触等信号;各伺服模块工作状态信号等。这些信号是通过光电隔离以后送到智能I/O接口上,光电隔离有效地将计算机数字量通道与外部过程模拟量通道隔离起来,大大地减小了外部因素的干扰,提高了整机系统的可靠性和稳定性。PLC输出的信号主要有:指示灯信号;控制继电器、接触器、电磁阀等动作信号;伺服模块的驱动使能和速度使能信号等。这些信号经I/O接口送到相应的继电器上,最终控制相应的电器。 2数控系统的软件设计 该数控系统采用了前后台式结构,相应地整个软件分为前台程序和后台程序。前台程序的设计充分考虑了软件的开放性,这样就可以根据某些具体要求增加软件的功能模块,为了实现这样的功能,要在调度程序中留有一定的时间片供使用,PMAC应用程序提供了利用中断调用这些模块的功能。前台程序主要包括插补模块、伺服驱动模块、PLC监控模块、数据采集及数字化加工模块等,也可以根据具体要求加入一些新的控制模块。前台程序功能模块,如图2所示。后台程序主要实现人机对话、数据处理和系统管理等功能。 3结论 在分析了数控火焰切割机加工工艺的基础上,开发了基于工业PC机和PMAC板的数控火焰切割机的数控系统,该数控系统具有良好的人机界面及切割轨迹的动态跟踪功能,使用操作十分方便,适合于工业现场使用。该数控系统已成功地应用于武汉电力设备厂数控火焰切割机的改造中。

多轴联动电火花加工数控系统开发方案


多轴联动电火花加工数控系统开发方案

电解加工的基本原理及其特点
(1)基本原理是利用金属在电解液中发生电化学阳极溶解的原理,将工件加工成形的一种工艺方法。 ?
(2)特点
1)可加工高硬度、高强度、高韧性等难切削的金属,适用范围广。
2)加工生产率高。
3)加工中工具和工件间无切削力存在,适用于加工易变形的零件。
4)加工后的表面无来自残余应力和毛刺,粗糙度可达Ra1.25~0.2,平均加工精度可达±0.1mm 左右。
5)加工过程中工具损耗极小,可长期使用。 ????叫自??电解去毛刺作为电解加工一种特殊的应用形式,它对加工工件无机械作用力,容易实现自动化或半自动化,适合去除高硬度、高韧性金属零件的毛刺,可以在工件的特定部位进行限定加工。 ?晚器半视黑不阻?????对于手工难以处理、可达性差的复杂内腔部位,尤其是交叉孔相贯线的毛刺,利量跑沉斤信用电解去毛刺有着明显的优势。电解去毛刺对加工棱边可氢互帝诗候既得议容取得较高的边缘均一性和良好再厂一例角材这所类尔条的表面质量,具有去除毛刺效果好、安全可靠、高效等优点,一般情况和传统工艺相比,效率可提高10倍以一上。 ??????电解去毛刺设备己有系列化产品,在汽车发动机、通用工程机械、航空航天、气动液压等众多行业得到广泛应用,是电解加工机床中生产批量较大,应用领域较广的重要装备。附: 电解加工技术的现状与展望1 引言 在经历大约二十年的低潮后,从20世纪90年代后期起,电解加工又重新焕发了生机。其研究机构及人员逐渐壮大,应用领域(尤其在航天、航空、军工领域)有所扩展,研究成果及论著数量激增,工艺技术水平及设备性能均达写总守和各杀似军员到了一个新的高度。 2 工艺技术研究 目前,电解加工工艺技术研究涉及的方向较多,但主要集中在微秒级脉冲电流加工、微精加工、数控展成加工、阴极设计及磁场对电解加工的影响等五大领域。下面分别加以详述。 2.1 微秒级脉冲电流加工 自20世纪70年代初起,前苏联、美国、日本、法国、波兰、瑞士、西德等相继开始了对脉冲电流电解加工的研究。在国内,多家单位相继开展了毫秒级脉般把题方些问样虽宗林冲电流电解加工的研究并成功用于工业生产。随着近代功率电子技术的发展,新型快速功率电子开关元件如MOSFET、IGBT等出现,使得有可能实现微秒级脉冲电流电解加工。20世纪90年代以来,微秒级脉冲电流电解加工基础工艺研究取得突破性进展。研究表明,此项新技术可以提高集中蚀除能力,并可实现0.05mm以下的微小间隙加工,从而可以较大幅度地提高加工精度和表面质量,型腔最高重复精度可达0.05mm[1,2,3],最热亮拿状拿也久突继连电低表面粗糙度可达Ra0.40μm重编获袁精坚答夜冲[1],有望将电解加工提高到精密加工的水平,而且可促进加工过程稳定并简化工艺,有利于电解加工的扩大应用。国内外众多研究机构利用微秒级脉冲电流开展了模具型腔及叶片型面加工、型腔抛光、电解刻字、电解磨等工艺可行性试验以及气门模具生产加工试验[1,3],研究成果进一步从工艺角度证实了上述结论。 2.2?微精加工 从原理上而言,电化学加工技术可分为两类:一类是基于阳极溶解原理的减材技术,如电解加沙顶宗么说功向件误工、电解抛光等;另一类是基于阴极沉积讨治决岩六皮所原理的增材技术,如电镀、电铸、刷镀等。这两类技术有一个共同点,即材料的去除或增加过程都是以离子的形式进行的。由于金属离子的尺点厂位木寸非常微小(10-1nm级),因此,相对于其它“微团”去除材料方式(调手胞对紧士迫卷丰如微细电火花、微细机械磨削),这种以“离子”方式去除材料的微去除方式使著究站不运穿树按苏复得电化学加工技术在微细制造领域、以至于谁许真洋史力与探换况纳米制造领域存在着极成称知绿大的研究探索空间。从理论上讲家拿模听科,只要精细地控制电流密度和电化学发生区域,就能实现电化学微细溶解或电化学微细沉积。微细电铸技术是电化学微细沉积的典型实例,它已经在微细制造领域获得重要应用。微细电铸是LIGA技术一个重要的、不可替代的组成部分,已经涉足纳米尺寸的微细制造中,激光防伪商标模版和表面粗糙度样块是电铸的典型应用[5,6]。但电化学溶解(成型)加工的杂散腐蚀及间隙中电场、流场的多变性严重制约了其加工精度,其加工的微细程度目前还不能与电化学沉积的微细电铸相比。目前电化学微精成型加工还处于研究和试验阶段,其应用还局限于一些特殊的场合,如电子工业中微小零件的电化学蚀刻加工(美国IBM公司)、微米级浅槽加工(荷兰飞利浦公司)、微型轴电解抛光(日本东京大学)已取得了很好的加工效果,精度已可达微米级[5]。微细直写加工、微细群缝加工及微孔电液束加工,以及电解与超声、电火花、机械等方式结合形成的复合微精工艺已显示出良好的应用前景[9,10,11,12]。 2.3?数控展成加工 传统的拷贝式电解加工的阴极设计制造困难,加工精度难以保证。尤其对整体叶轮上的扭曲叶片之类通道狭窄的零件表面,由于受工具阴极刚性及加工送进方式的限制,拷贝式电解加工更难以完成其加工任务。 20世纪80年代初,以简单形状电极加工复杂型面的柔性电解加工──数控展成电解加工的思想开始形成,它以控制软件的编制代替复杂的成形阴极的设计、制造,以阴极相对工件的展成运动来加工出复杂型面。这种加工方法工具阴极形状简单,设计制造方便,应用范围广,具有很大的加工柔性,适用于小批量、多品种、甚至单件试制的生产中。 80年代中期,前苏联乌法航空学院特种加工工艺及设备研究所以过程控制为突破口,设计了一种柔性电解加工单元,应用特殊的电流脉冲波形和高选择性的电解液,加工精度达0.02mm,表面粗糙度达Ra0.2~0.6mm。波兰华沙工业大学的Kozak教授于1986年率先提出了电解铣削的思想,以棒状旋转阴极作类似于圆柱状侧铣刀的成形运动来形成加工表面,成功地应用于直升机旋翼座架型面的加工,加工中采用NaNO3电解液,精度可达±0.01~0.02mm,表面粗糙度达Ra0.16~0.63mm。波兰Cracow金属切削学院的A.Ruszaj和J.Cekaj教授利用形似球头铣刀的工具阴极,进行了型面光整加工的试验研究,取得了形状误差小于0.01mm的加工效果,从而证明了该 工艺在模具的光整加工方面具有很好的应用价值。? 美国、英国、俄罗斯都高度重视数控电解加工技术的研究并已得到应用,在新型航空发动机及航天火箭发动机的研制中发挥了重要作用。美国 GE 公司的五轴数控电解加工,美国、俄罗斯仿形电解加工带冠整体叶轮代表了数控电解加工整体叶轮的国际先进水平。在国内,南京航空航天大学从20世纪80年代中期开始进行数控展成电解加工工艺技术的研究,已在电解加工设备研制、加工机理研究、控制软件编制及工艺试验等方面均取得了重要进展[7,8,9]。具体研究内容包括以下几方面:
(1)设备研制:研制了五轴数控电解加工机床及配套的多轴联动数控系统。该机床具有三个直线运动坐标轴及二个旋转运动坐标轴,各轴均采用步进电机驱动。多轴联动数控系统为二级数控系统,上位机为一台通用计算机,用于数据处理及生成数控加工程序,下位机为组合在一起的五台经济型二轴数控单元及其驱动单元,用于驱动机床各轴运动。
(2)成形规律研究:研究了棒状外喷式阴极、三角形截面内喷式阴极、矩形截面内喷式阴极三种状况下展成电解加工间隙随一些主要工艺参数变化的规律。
(3)阴极设计:针对整体叶轮结构,设计制造了不同结构的开槽阴极、型面精加工阴极,并通过工艺试验对其结构进行不断改进,现已设计出了新颖结构的组合式开槽阴极及矩形截面整体式型面精加工阴极,很好地解决了加工过程中易产生的阴极短路烧伤问题。
(4)加工软件开发:针对整体叶轮的开槽加工及型面精加工,开发了相应的数控展成电解加工软件,具有叶片型面的数据处理、数控加工的展成运动轨迹计算及整体叶轮的三维型面几何造型等功能。
(5)加工工艺试验:包括直纹面、非直纹面整体叶(涡)轮及带冠整体叶轮的展成电解加工、叶片型面电解抛光与五轴联动电解磨削等。试验表明,工艺过程稳定可靠,可以获得较高的加工精度和较低的表面粗糙度。 2.4 阴极设计 目前的生产实际中,多采用迭代试验修正法来制作阴极,这不仅浪费人力物力,而且要求操作者具备丰富的实践经验和很高的技术水平,同时也大大延误了生产周期,增加了制造成本。特别是对于形状复杂和精度要求较高的零件,阴极设计问题已成为影响电解加工应用的一个重要原因。南京航空航天大学研究设计了阴极设计CAD/CAE/CAM系统的结构框架以及开发策略。该系统基于专家系统,结合专业技术人员和领域专家的经验来优选工艺参数,并且采用基于自由边界的数值算法,保证算法的收敛性[10]。南京航空航天大学还提出了一种基于正问题数值求解模拟“试验修整”进行阴极设计的方法。该方法将生产实际中制造阴极的过程再现于计算机上。采用有限元求解拉普拉斯方程得到加工间隙中的电位分布,通过不断地将获得的等位线与理想工件边界进行比较,将得到的差值映射到阴极端用来指导阴极的修整,直到工件阳极端的差值小于所允许的值。该设计方法具有易于处理复杂边界、收敛性好、精度高的特点[11]。合肥工业大学也提出了应用阴极设计数据表来进行阴极设计的方法,通过合理设计工艺试验,获取了特征部位的加工间隙偏差值,据此计算出各特征部位对应阴极处的附加修正量。在此基础上,建立五种阴极设计数据表,为阴极设计提供了丰富的修正数据。在此基础上,可望建立阴极设计数据库[12],。 2.5磁场提高电解加工精度的研究 这项技术早期研究较多的是磁场对电解磨削、电解抛光的影响。近年来,国内开展了电解成型加工叠加磁场的研究。西北工业大学的研究发现当加工对象是钛合金或者是在NaCl电解液中加工45钢时,磁场可以显著减少杂散腐蚀,提高加工精度,而在NaNO3电解液中加工45钢则效果甚微[13]。西安工业学院进行了磁场影响电场的仿真试验及在电解加工装置上叠加磁场的加工工艺试验。试验表明,电解加工过程中叠加磁场会改变原有电场分布,进而改变间隙流场的分布,从而

本文拓展问题:

多轴联动电火花加工数控系统开发方案五轴电火花加工多轴联动电火花加工数控系统开发